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A B S T R A C T

The number of studies showing adverse effects on living organisms induced by different types of man-made
Electromagnetic Fields (EMFs) has increased tremendously. Hundreds of peer reviewed published studies show a
variety of effects, the most important being DNA damage which is linked to cancer, neurodegenerative diseases,
reproductive declines etc. Those studies that are far more effective in showing effects employ real-life Mobile
Telephony (MT) exposures emitted by commercially available mobile phones. The present review - of results
published by my group from 2006 until 2016 - compares DNA fragmentation induced by six different EMFs on
the same biological system - the oogenesis of Drosophila melanogaster - under identical conditions and proce-
dures. Such a direct comparison between different EMFs - especially those employed in daily life - on the same
biological endpoint, is very useful for drawing conclusions on their bioactivity, and novel. It shows that real MT
EMFs are far more damaging than 50 Hz alternating magnetic field (MF) - similar or much stronger to those of
power lines - or a pulsed electric field (PEF) found before to increase fertility. The MT EMFs were significantly
more bioactive even for much shorter exposure durations than the other EMFs. Moreover, they were more
damaging than previously tested cytotoxic agents like certain chemicals, starvation, dehydration. Individual
parameters of the real MT EMFs like intensity, frequency, exposure duration, polarization, pulsing, modulation,
are discussed in terms of their role in bioactivity. The crucial parameter for the intense bioactivity seems to be
the extreme variability of the polarized MT signals, mainly due to the large unpredictable intensity changes.

1. Introduction

1.1. Microwave EMFs, DNA damage and related effects

The number of published peer review studies showing DNA damage
and related effects induced by Radio Frequency (RF)/microwave
Electromagnetic Fields (EMFs), especially by Mobile Telephony (MT)
EMFs, on a variety of organisms/cell types under different experimental
conditions is increased considerably in recent years [1–36], in spite of
attempts to dispute some of them [37–39].

Specifically, the damage on reproductive cells of different animals
found in several of the above studies explains other findings connecting
microwave EMF exposure with insect, bird, and mammalian (including
human) infertility [40–48], or reduction in bird and insect (especially
bees) populations during the past 10–15 years [49–53].

The effects on DNA and reproduction reported by different labs on a

variety of animals demonstrate a remarkable similarity. For example,
Sharma and Kumar [47] found a large decrease in reproduction (egg
laying) of bees after exposure to mobile phone radiation, which was
identically observed before in fruit flies [15,16,41,42] and birds
[49–51]. The recorded decreased reproduction is strongly corroborated
by very similar effects in amphibians [54,55], rats [17,46], and human
sperm [44]. This unique similarity of effects in different organisms
found by different research groups can be explained by the observed
cell death induction in reproductive cells due to DNA damage found for
Drosophila ovarian cells [15,16], human sperm cells [22], mice and rat
sperm cells [10,17], and chick embryos [36]. It is evident that such a
similarity of findings is not a coincidence.

It is important to note that the exposure levels in the majority of the
above studies were below the officially accepted exposure limits [56]
and only in a few of them [4–6,13] they were slightly exceeding these
limits.
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1.2. Microwave EMFs, electro-hypersensitivity, and cancer

During the past 15 years several statistical studies indicate a con-
nection between residential exposure to radiation of MT base station
antennas (which emit similar radiation with that of mobile phones),
and reported symptoms of unwellness usually referred to as “micro-
wave syndrome”, or “electro-hypersensitivity” (EHS). These include
headaches, fatigue, sleep disorders, etc. [57–63]. Similar effects that
were previously categorized as medically unexplained symptoms (MUS)
are recently attributed to chronic stress and inflammation [64]. Re-
cently, in an effort to find objective methods for EHS evaluation, ∼80%
of EHS self‑reporting patients were found to present oxidative stress
biomarkers in their peripheral blood [65] which is strongly related to
DNA damage.

At the same time, more and more epidemiological studies indicate
an increasing connection between mobile phone use and brain tumors
in humans, [66–75]. The time length of cancer development after cel-
lular damage may be many years depending on the animal and the type
of cancer. It is called latency period and is defined as the time between
the initial causative event and the development of clinically recogniz-
able cancer. The latency period for gliomas (type of brain cancer) is
more than 20 years in humans [76]. This probably explains why epi-
demiological studies only recently have started showing a connection
between mobile phone use and cancer.

Tumor promotion in experimental animals after long-term RF ex-
posure at levels below the officially accepted limits is also reported
[77,78]. In a recent study of the USA National Toxicology Program
(NTP) rats were exposed for 2 years, 9 h per day, in a simulated near
field of a mobile phone antenna emitting 2nd generation (Global
System for Mobile telecommunications - GSM) or 3rd generation (Code
Division Multiple Access - CDMA) EMFs. [The CDMA is part of the
Universal Mobile Telecommunication System – UMTS]. Exposed rats
developed brain cancer (glioma) and heart cancer (malignant schwan-
noma) for both lower (1.5 W/kg) and higher (3, and 6 W/kg) Specific
Absorption Rate (SAR) levels than the current exposure limit (2 W/kg)
for the human head [56,79]. An Italian life-span exposure study of rats
in a simulated GSM 1800 far field, also found induction of heart
schwannomas and brain glial tumors, in agreement with the results of
the NTP study [80].

These findings are in agreement with the above reported DNA da-
mage findings, since DNA damage is a main cause of cancer [81,82].
Alternatively, DNA damage may result in cell death, reproductive de-
clines, or neurodegenerative diseases [83,84].

1.3. Combination of frequency bands in telecommunication microwave
EMFs

It is important to note that except for the RF/microwave carrier
frequency, Extremely Low Frequencies - ELFs (0–3000 Hz) are always
present in all telecommunication EMFs in the form of pulsing and
modulation. There is significant evidence indicating that the effects of
telecommunication EMFs on living organisms are mainly due to the
included ELFs [29,30,85–91]. For example, Frei et al [87] found that a
2.8 GHz RF EMF pulsed on 500 Hz was significantly more effective in
increasing heart rate in rats than the corresponding continuous wave
(CW) (un-pulsed) RF 2.8 GHz EMF with the same average intensity and
exposure duration. Huber et al [90] found exposure to 900 MHz RF
EMF pulse modulated on GSM MT ELFs, to induce changes in the
human electro-encephalogram (EEG), while the corresponding CW
signal (same RF frequency un-pulsed) with the same exposure duration
did not. Similarly, Franzellitti et al [29] found that a 1.8 GHz RF signal
amplitude-modulated by GSM pulsing ELFs induced DNA damage in
cultured human trophoblast cells, while the same signal un-modulated
(CW), with the same exposure duration, was ineffective. Moreover, ELF
EMFs alone are found independently to be bioactive, as are RF EMFs
modulated or pulsed by ELFs [92–94]. Bawin and Adey [92] found that

the ELF sinusoidal signals used previously to modulate a RF carrier CW
EMF [85,86] induced alone (without the RF carrier) alterations in Ca2+

concentration in chicken and cat brain cells as did the modulated RF
EMF, while the RF carrier alone (un-modulated) was ineffective.

These experimental results are in agreement with the “ion forced-
oscillation mechanism” for irregular gating of electro-sensitive ion
channels on cell membranes which predicts that pulsing EMFs are more
bioactive than CW EMFs of the same other parameters, and that the
biological activity of any specific type of EMF is inversely proportional
to its frequency and proportional to its intensity [95–97]. The Inter-
national Agency for Research on Cancer (IARC) has classified both ELF
and RF EMFs as possibly carcinogenic to humans [98,99].

1.4. Conflict between experimental studies due to unrealistic exposures

An extremely important observation is the intense opposition be-
tween the results of experimental studies that employ real exposures
from commercially available devices (mobile phones or other tele-
communication devices), and studies employing simulated exposures
from generators or “test” phones with similar but invariant parameters
such as intensity, frequency etc. While ∼50% of the studies employing
simulated exposures do not find any effects, studies employing real-life
exposures from commercially available devices display an almost 100%
consistency in showing adverse effects [34–36,84,100–118]. A wide
variety of biological and clinical effects are already found to be induced
by real-life exposures on a similarly wide variety of animals/biological
samples including human volunteers exposed in vivo (19 studies)
[19,34,35,100,104,106–109,114,116], human sperm in vitro (2 stu-
dies) [23,100], mice or rats or guinea pigs or rabbits in vivo (24 studies)
[100,102,103,105,110,111,115,117], Drosophila (11 studies)
[15,16,26,31,41,42,100,101,140,141], bees (4 studies) [47,100,118],
ants (1 study) [100], chick embryos (3 studies) [36,45,100], quails (1
study) [100], human cells in vitro (2 studies) [100,112], cow brain
tissue in vitro (1 study) [113], mouse cells in vitro (1 study), protozoa
(1 study), and even purified proteins in vitro (1 study) [100]. From a
total of 71 studies reviewed above that employed real exposures 68
recorded significant adverse effects (95.8%) ranging from loss of or-
ientation, kinetic, behavioural, or EEG changes, heart rate changes,
effect on cognitive function and memory impairment, effect on cell
growth and proliferation, temperature increases in brain tissue, to de-
crease in male and female reproductive capacity, reproductive declines,
molecular changes, changes in enzymatic activity, biochemical changes
in the pregnant women and their embryos, DNA damage and cell death,
protein damage, and histopathological changes in the brain
[34–36,84,100–118]. From the remaining three studies, two reported
no effect and one reported an increase in short-term memory of chil-
dren which we did not count as an adverse effect although it may be
[100,106]. Nineteen of the above 71 studies were published within the
last three years [35,36,102–118] after the publication of the observa-
tion that real exposures induce stronger effects than simulated ones
[100]. (For real exposure studies published up to 2015, see Refs.
[34,101], and reviews [84,100]. For real exposure studies published
from 2016 up to today references are [35,36,102–118]).

The only difference between real and simulated electromagnetic
signals emitted by modern telecommunication devices/antennas (and
corresponding exposures) is that real ones are highly and unpredictably
variable each moment (especially in their intensity), while simulated
ones have fixed parameters, and thus are invariable and totally pre-
dictable.

Although experimental studies employing real-life microwave tele-
communication exposures are obviously much more effective in showing
effects, there also seems to be an overall predominance (∼60%) of stu-
dies showing effects. In a recent review of in vitro studies investigating a
variety of microwave effects in many different cultured cell types re-
gardless of real-life or simulated exposure, from a total of 161 studies, 98
found effects (60.87% of the studies), and 63 did not [119].
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1.5. Comparison of bioactivity between MT and other types of man-made
EMFs

Comparison studies between different EMFs on the same biological
model/endpoint under the same conditions and procedures are rare in
the scientific literature, in spite of the fact that they can be very useful
in drawing conclusions on the bioactivity of the different physical
parameters between EMFs. Such studies are those already discussed
above [29,30,85–91] which suggested that the ELF pulsing and mod-
ulation is mainly responsible for the biological effects of the modulated
(information carrying) RF EMFs and not the RF carrier itself. This ob-
servation is of great importance in terms of protection/safety especially
in the case of modern types of microwave/RF telecommunication EMFs
all of which increasingly employ ELF pulsing (and modulation) in order
to increase the density/amount of transmitted information (see 4.3). A
recent study by D’Silva et al [36] compared bioactivity between 2nd
(GSM) and 3rd (UMTS) generation MT EMFs emitted by real mobile
phones on chick embryo development and found that both induced
DNA damage and structural changes, with the UMTS being even more
bioactive than the GSM.

There are a few studies comparing power frequency (50–60 Hz)
EMFs with CW RF EMFs. These RF fields bear no similarity with real
modern telecommunication RF EMFs basically due to the absence of
ELF pulsing and modulation. Marchionni et al [120] found a 50 Hz
alternating Magnetic Field (MF) to be able to stimulate ion channels in
rat sensory neurons while a 900 MHz CW EMF was not. Lin et al [121]
found that a 50 Hz EMF (60 G, 205 V/m) or a 2 GHz CW RF EMF 20 V/
m, could both upregulate gene transcription in yeast.

Two studies were found comparing 50–60 Hz fields with simulated
MT EMFs. These studies are closer to reality than the CW RF studies, but
not close enough since they did not employ real MT EMFs. Simulated
MT EMFs include ELF pulsing at the same average frequencies and in-
tensities as the real ones, but this pulsing is totally invariant and thus
predictable, in contrast to the real fields in which ELFs (and RFs) vary
unpredictably each moment [84,99,100]. Therefore, simulated MT
EMFs are certainly expected to be more bioactive than CW RF EMFs,
but not as bioactive as real MT EMFs. A study by Belyaev et al [8]
reported that GSM 900 simulated exposure by a “test” phone (with
SAR = 0.037 W/kg), or exposure of equal duration (2 h) to 50 Hz al-
ternating MF (with intensity 0.15 G), induced chromatin condensation
(a sign of cell death) in human lymphocytes at similar degrees. A more
recent study by Duan et al [122] compared a 50 Hz alternating MF (10,
20, or 30 G) with a simulated GSM 1800 MHz EMF (1, 2, or 4 W/kg)
with the same exposure duration, and found only the strongest fields of
both types (both exceeding ICNIRP limits) to be able to induce DNA
damage at more or less comparable degrees, although of different
patterns.

The direct comparison of effects on the same biological model under
identical conditions and procedures between MT EMFs, and a 50 Hz
alternating MF is important, since 50 Hz alternating MFs are those of
power lines which are accused for carcinogenicity long before the MT
EMFs [123–126], and both types of EMFs are classified as possible
carcinogens [98,99].

A specific aim of the present review (apart from reviewing other
related studies), is the direct comparison of DNA fragmentation re-
corded in our previous studies on Drosophila ovarian cells, under
identical conditions and experimental procedures, induced by six dif-
ferent man-made EMFs: GSM 900, GSM 1800 [15,16], 50 Hz alternating
MF 1, 11, 21 G [94], and 8 kHz (44.4 Hz pulse repetition rate), 400 kV/
m, pulsed electric field (PEF) [127]. Moreover, to draw conclusions on
which specific physical parameters of the EMFs are most responsible for
the recorded bioactivity. In this case the MT EMFs are real ones and
thus this comparison is novel.

1.6. Drosophila oogenesis as a detector for EMF-induced DNA
fragmentation

Each ovary of an adult female Drosophila consists of 16 to 20
ovarioles. Each ovariole is an individual egg assembly line, with new
egg chambers produced in the most anterior cyst called germarium (g).
During oogenesis, new egg chambers produced by specific stem cells
bud off the germaria and develop through 14 successive developmental
stages (S1-S14) moving toward the posterior end to be fertilized and
laid through the oviduct. Each egg chamber consists of a cluster of 16
germ cells, surrounded by an epithelial monolayer of somatic follicle
cells (FCs) responsible for building the egg shell. In the germarium, the
germline cyst originates from a single cell, (cystoblast), which under-
goes four mitotic divisions to form the 16-cell cluster. Among the 16
germ cells, one differentiates as the oocyte (OC) - the single cell which
after fertilization will give the embryo - and the rest become nurse cells
(NCs) which will serve as nutrients for the OC. Therefore, each egg
chamber in the ovaries of female Drosophila consists of three different
types of cells; a single OC, 15 NCs, and up to ∼1200 FCs [128–132].

NCs and FCs, undergo Programmed Cell Death (PCD) during the late
oogenesis stages 11–14 after they have completed their role and are no
longer needed, exhibiting DNA fragmentation, actin cytoskeleton dis-
organization, chromatin condensation, and phagocytosis of the cellular
remnants by the adjacent follicle and epithelial cells [128–130].

In addition to PCD during late oogenesis, Stress-Induced Cell Death
(SICD) may take place during the early- and mid-stages (from ger-
marium up to stage 10) in cases that certain egg chambers do not de-
velop normally due to starvation or other stress factors, [128–130].
Both PCD and SICD occur after DNA fragmentation. The most sensitive
developmental stages during oogenesis for SICD, are the germarium
referred to as the “germarium checkpoint” or “early oogenesis check-
point”, and stages 7–8 just before the onset of vitellogenesis (stages
8–10), referred to as the “mid-oogenesis checkpoint” [129,130]. Both
checkpoints were found to be very sensitive to stress factors such as
poor nutrition [129], or exposure to cytotoxic chemicals like etoposide
or staurosporine [128]. In all cases, the stress-induced DNA fragmen-
tation at the two checkpoints was observed only in the NCs and FCs, not
in the OC. Moreover, apart from the two checkpoints, egg chambers
were not observed before our experiments [15] to degenerate during
other stages of early- or mid-oogenesis [15,128–132].

In our experiments we studied DNA fragmentation induced by dif-
ferent types of man-made EMFs, not PCD. For this reason, late oogenesis
egg chambers (stages 11–14) were excluded, and we only examined egg
chambers from germarium up to stage 10.

2. Exposure details and experimental methods

In each experiment with all six different EMFs, newly emerged adult
Drosophila melanogaster flies from the stock were collected; anesthetized
very lightly with diethyl ether and separated males from females. The
collected flies were then put in groups of ten males and ten females in
standard laboratory glass vials, with standard food forming a smooth
plane surface 1 cm thick at the bottom of the vials. The glass vials were
closed with cotton plugs. Detailed descriptions were given before
[15,16,41,42,94,127].

The exposures to the EMFs started on the first day of each experi-
ment (day of eclosion), 1 h after all flies were fully awaken from the
anesthesia, and lasted for a total of 120 h (5 days). The net duration of
exposure/sham-exposure to each individual EMF, and the field/radia-
tion intensities ± standard deviation (SD) were as follows: a) Exposure/
Sham-Exposure to the GSM 900 or 1800 EMFs for 6 min every 24 h
(36 min total) with the handset in “talk” mode and in contact with the
vials (RF radiation intensity ∼0.378 ± 0.059 mW/cm2, ELF E-field
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∼19 ± 2.5 V/m, ELF B-field ∼0.9 ± 0.15 mG for GSM 900 and ∼30%
lower corresponding values for GSM 1800, highest SAR for human head
of the handset used in our experiments given by the manufacturer
0.89 W/kg) [15,16]. b) Exposure/Sham-Exposure to the 50 Hz alter-
nating MF (1 or 11 or 21 G) continuously for the 5 days (120 h total)
within especially designed and constructed coils [94]. c) Exposure/
Sham-Exposure to the 8 kHz (44.4 Hz pulse repetition rate), 400 kV/m
PEF for 30 min every 2 h during the 5 days (30 h total) in especially
designed and constructed capacitors [127]. [This PEF roughly re-
sembles the atmospheric EMFs (sferics) produced by lightning during
thunderstorms. These have a ∼10 kHz carrier frequency (instead of
8 kHz) with a ∼20 Hz pulse repetition (instead of 44.4 Hz). The shape
of the pulses is in both EMFs bipolar damping) [127,133]].

Then, 120 h after the beginning of exposure/sham-exposure, the
flies were removed from the glass vials, the females were collected,
anesthetized, and dissected. Egg chambers from germarium up to stage
10 were collected from both ovaries, and fixed for the TUNEL (Terminal
deoxynucleotide transferase dUTP Nick End Labeling) assay, as de-
scribed before [15,16,94,127].

The TUNEL assay is a known marker for DNA fragmentation (severe
DNA damage including single and double strand breaks). According to
this assay, fluorescein dUTP (a fluorescent substance) binds through the
action of terminal transferase (an enzyme that catalyzes the specific
biochemical reaction), onto fragmented genomic DNA which then be-
comes labelled by characteristic fluorescence. The label incorporated at
the damaged sites of DNA is visualized by fluorescence microscopy
[134].

3. Comparing DNA damage from the different EMFs

The comparison of DNA fragmentation in Drosophila ovarian cells
(sum ratio of TUNEL-positive to total number of egg chambers) between
GSM 900, GSM 1800, 50 Hz MF 1 G (MF1), 11 G (MF2), 21 G (MF3),
and PEF 400 kV/m, is presented in Table 1, and Fig. 1.

MT EMFs were found to be significantly more hazardous than the
other types of EMFs inducing DNA fragmentation in a much higher
degree even though the durations of daily exposure to the other EMFs
were significantly longer than the 6 min daily exposure to MT EMFs.

More specifically: GSM 900 or GSM 1800 mobile phone radiation
with total exposure duration 36 min induced DNA fragmentation to up
to 50.16% of the egg chambers in the ovaries of the exposed females
(with the GSM 900 being more bioactive than GSM 1800 basically due
to its higher intensity) [15,16] (Table 1, Fig. 1). The corresponding
percentages for 1, 11, and 21 G, 50 Hz MF exposure were up to 7.52%
with total exposure duration 120 h [94] (Table 1, Fig. 1). Finally, the
corresponding percentage for the PEF was 2.74% with total exposure
duration 30 h [127], (Table 1, Fig. 1). [The above percentages (as in
Table 1) refer to the difference in the percentage of egg chambers with
fragmented DNA between exposed and sham-exposed animals. If we
referred to % deviation (increase) in DNA damage of the exposed in
regards to the sham-exposed, the corresponding percentages would be
much greater (669.6% for the GSM EMFs, 114.8% for the MF, and

47.7% for the PEF)].
It should be emphasized that while the mobile phone EMFs/radia-

tion exposed the samples at the very same intensity levels as users are
daily exposed by mobile phones, the intensities of the other EMFs were
significantly higher than the environmentally accounted ones: 1) The
strongest MF intensity accounted at the closest proximity to the most
powerful power lines is usually significantly less than 1 G or 0.1 m T
[94]. In our experiments exposure to 1 G caused 5.72% increase in
ovarian DNA fragmentation, while 11 G caused 6.71%, and 21 G caused
7.52% DNA fragmentation [94] (Table 1, Fig. 1). 2) The PEF similar to
those of atmospheric discharges (sferics) exposed the animals at
400 kV/m, while sferics are sensed by sensitive individuals at (totally
polarized) intensities down to ∼0.35 V/m (approximately ∼1000 km
from a thunderstorm) [127,133].

From the above comparison, it follows that (real) MT EMFs are
much more bioactive than the other EMFs, and - most important - much
more bioactive than the 50 Hz alternating MF which was (and is still)
accused for carcinogenicity, long before the MT EMFs.

Previously examined stressors like cytotoxic chemicals such as
etoposide or staurosporine, or poor nutrition were only observed to
induce DNA fragmentation, exclusively in the NCs and the FCs, and
exclusively at either one of the two checkpoints (germarium and stages
7–8) during early and mid-oogenesis [128–130,132]. Thus, they were
not found to induce DNA fragmentation in the OC, neither at devel-
opmental stages other than the two checkpoints. Later it was found that
the absence of water (dehydration) can induce DNA fragmentation at
more developmental stages in addition to the two checkpoints, but
again not in the OC [135].

Fig. 2 shows an ovariole of an unexposed female with TUNEL-

Table 1
Effect of Different EMFs on Ovarian DNA Fragmentation.

EMF Ratio of TUNEL-positive to total number
of egg-chambers (Exposed) ± SD

Ratio of TUNEL-positive to total number of
egg-chambers (Sham-Exposed) ± SD

Difference in DNA fragmentation
between Exposed and Sham-Exposed
Groups

P-value, between Exposed
and Sham-Exposed groups

GSM 900 0.5772± 0.083 0.075 ± 0.038 + 50.16 % <0.0002
GSM 1800 0.4339± 0.087 0.062 ± 0.034 + 35.77% <0.0005
MF 1 0.1243± 0.019 0.0671 ± 0.014 +5.72% <0.001
MF 2 0.1367± 0.02 0.0696 ± 0.018 + 6.71% <0.001
MF 3 0.1407± 0.021 0.0655± 0.019 +7.52% <0.001
PEF 0.0848± 0.012 0.0574 ± 0.012 +2.74% <0.05

Fig. 1. Ovarian DNA Fragmentation (ratio of TUNEL-positive to total number of
egg chambers), induced by six different EMFs [GSM 900, GSM 1800, 1 G MF
(MF1), 11 G MF (MF2), 21 G MF (MF3), and 400 kV/m PEF], under identical
conditions/procedures. E: exposed groups, SE: sham-exposed groups.
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negative egg chambers at all stages. Figs. 3–5 show ovarioles of females
exposed to MF (Fig. 3,5), or exposed to PEF (Fig. 4). The degree of
damage induced by the PEF or the MF is more or less comparable with
that from other cytotoxic agents (except for dehydration) examined
before [94,127–129] and smaller than the damage caused by dehy-
dration [135]. Only in a few cases, exposure to the strongest MF (21 G
or 2.1 m T) caused DNA damage also in the OC (Fig. 5), something that
was not observed with any other examined cytotoxic agent
[94,128,129,135]. [The nucleus of the OC is distinct as is smaller than
the nuclei of the NCs (Fig. 5, 7)].

Mobile phone EMF/radiation exposure during normal “talk” mode
was found to induce DNA fragmentation, not only at the two check-
points, but at all developmental stages during early- and mid-oogenesis
(from germarium up to stage 10), and moreover to all three types of egg
chamber cells, i.e. NCs, FCs and the OC [15,16].

Figs. 6 and 7 show ovarioles of females exposed to MT EMFs ex-
hibiting a TUNEL-positive signal at all developmental stages during
early and mid-oogenesis and in all three types of egg chamber cells
(NCs, FCs, OC). Thus, MT EMFs were found to be significantly more
bioactive than all other previously examined stress factors (etoposide,

staurosporine, starvation, dehydration), although a direct comparison is
not possible.

4. Discussion

4.1. What does the comparison of effect of different EMFs on Drosophila
ovarian DNA show?

We compared results from previous studies in which we used the
Drosophila oogenesis as a sensitive biological system, and the TUNEL
assay to record DNA fragmentation in the ovarian cells induced by six
different man-made EMFs under identical conditions and procedures.
The six different EMFs: were 1) GSM 900 mobile phone radiation, 2)
GSM 1800 mobile phone radiation [15,16], 3) 1 G, 50 Hz alternating
MF (MF1), 4) 11 G, 50 Hz alternating MF (MF2), 5) 21 G, 50 Hz alter-
nating MF (MF3) [94], and 6) PEF (8 kHz, 44.4 Hz, 400 kV/m) found
before to increase fertility [127], similar to EMFs of atmospheric

Fig. 2. Normally developed ovariole of an unexposed female Drosophila, con-
taining egg chambers from germarium (g) up to stage 8 (S8), all TUNEL-ne-
gative. Bar: 10 μm.

Fig. 3. Ovariole of an exposed to 1 G (0.1 mT) MF female Drosophila, con-
taining egg chambers from germarium (g) up to stage 8 (S8), with fragmented
DNA only at the germarium and TUNEL-negative at all other developmental
stages. Bar: 10 μm.

Fig. 4. Ovariole of an exposed to PEF female Drosophila, containing egg
chambers from germarium (g) up to stage 7 (S7), with fragmented DNA only at
the stage 7 egg chamber and TUNEL-negative at all other developmental stages.
Bar: 10 μm.

Fig. 5. Ovariole of an exposed to 21 G (2.1 mT) MF female Drosophila, con-
taining egg chambers from germarium (g) up to stage 7 (S7), with fragmented
DNA in the nurse cells (NC) at both checkpoints, germarium and stage 7, and
TUNEL-negative at all other developmental stages. In the stage 7 egg chamber,
the TUNEL-positive signal is evident also in the oocyte (OC). Bar: 10 μm.
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discharges [133].
From the comparison it becomes obvious that the MT EMFs (GSM

900, GSM 1800) are far more damaging than the 50 Hz MFs, or the PEF
(Table 1, Fig. 1). Moreover, MT EMF exposure was found to induce DNA
fragmentation in Drosophila ovarian cells more than other types of
external stress examined before like certain chemicals (etoposide or
staurosporine), starvation, or dehydration. The MT EMFs were found to
induce DNA fragmentation not only at the two most sensitive devel-
opmental stages (checkpoints) but at all developmental stages during
early- and mid-oogenesis (from germarium up to stage 10), and in all
three kinds of egg chamber cells (i.e. not only in the NC and FC but also
in the OC). DNA fragmentation in the OC may result, if not in cell death,
in heritable mutations transferred to the next generations. Such a

possibility can be far more dangerous than a reduction in the offspring,
since it may lead to cancerous or mutated organisms. The 50 Hz alter-
nating MF or the PEF were found to induce DNA fragmentation at more
or less comparable degrees with the non-electromagnetic agents.

The observed DNA fragmentation is an indirect effect, since EMFs
compared in the present study are non-ionizing, meaning they do not
cause direct ionization. The indirect effect on DNA can be induced by
irregular release within the cell of oxidative free radicals or hydrolytic
enzymes like DNases, which may occur after irregular gating of voltage-
gated ion channels on the cell membranes caused by ELF EMFs, such as
the ELF pulses and modulation always present in MT EMFs/radiation.
Irregular gating of ion channels in cell membranes by EMFs is described
by the “ion forced-oscillation mechanism” [95–97], and may lead to
disruption of the cell’s electrochemical balance and function [136,137].
The validity of this mechanism has been verified by computer numer-
ical test. Other mechanisms suggested before failed to pass the same test
[138]. The same mechanism was recently applied successfully to ex-
plain health symptoms caused by atmospheric discharges (lightning)
reported for decades but never explained before [133].

Despite many other studies that report no effects
[93,94,98–100,106,119], the consistency and remarkable similarity of
many of the reported effects - including the most detrimental DNA
damage - and the rapidly increasing number of the studies reporting
effects during the recent years is alarming. All studies from different
research groups and on different biological models/endpoints cited in
the Introduction of the present study exhibit mutually supportive re-
sults and this makes unlikely the possibility that these results could be
wrong or due to randomness.

In addition to remarkable gene similarities, the basic cellular pro-
cesses are identical in insect and mammalian cells. All cells in both
insects (including Drosophila) and mammals (including humans) have
the same type of cell membranes, are full with billions of identical free
ions like calcium (Ca+2), potassium (K+), sodium (Na+) etc, initiating
and accompanying all cellular events, and have the same intracellular
organelles like mitochondria, ribosomes, endoplasmic reticulum, nu-
cleus containing the cell’s genomic DNA with the same basic structure,
chemical elements and bonds in all organisms, etc. [139]. These simi-
larities at the cellular level between all animals are more fundamental
than differences in volume, mass, shape, macroscopic functions, in-
telligence, etc, since all health effects are initiated at the cellular level.
Thus, it is reasonable to assume that a cellular effect caused by EMFs on
Drosophila (e.g. DNA damage) can be expected to occur also in the
human organism. The great advantage in studying the effect on Dro-
sophila is - among others - the much shorter life-cycle due to which, an
effect can be observed within a few hours or days, while in mammals it
would take much longer.

4.2. Examination of physical parameters responsible for the intense
bioactivity of MT EMFs

It is evident that real-life microwave telecommunication EMFs are
very bioactive. The question arising is, which specific parameter(s) of
this type of EMFs is mainly responsible for this intense bioactivity?

Plea of experimental data in combination with theoretical calcula-
tions [16,97,100,140,141] point that the most important physical
parameters of EMFs in terms of bioactivity, are: 1) polarization (in
combination with coherence), 2) ELF components (pulsing, modulation,
etc.), 3) field/radiation intensity, 4) exposure duration, 5) field varia-
bility.

Let us now examine the individual parameters of the specific EMFs
compared in the present study: 1) All six EMFs were totally (linearly)
polarized (and coherent), therefore we must exclude polarization/co-
herence as the critical parameter. 2) All six of them include ELFs, three
of them (GSM 900, GSM 1800, PEF) were pulsed on ELF, and still the
PEF did not cause significant DNA fragmentation, therefore we must
also exclude ELF and pulsing. 3) Although a direct comparison in

Fig. 6. Ovariole of an exposed to MT EMF (GSM 1800) female Drosophila,
containing egg chambers from germarium (g) up to stage 9 (S9), with frag-
mented DNA in the nurse cells (NC) at all developmental stages from ger-
marium up to stage 9. At the stage 9 egg chamber the TUNEL-positive signal is
evident also in the follicle cells (FC). Bar: 10 μm.

Fig. 7. Ovariole of an exposed to MT EMF (GSM 900) female Drosophila, with
fragmented DNA in the nurse cells (NC) at all developmental stages from ger-
marium (g) up to stage 8 (S8). At the stage 8 egg chamber the TUNEL-positive
signal is evident also in the oocyte (OC). Bar: 10 μm.
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intensity is not possible due to the different frequencies and waveforms
among the MT, MF, and PEF EMFs, the MT EMFs were at en-
vironmentally accounted intensities, while the other EMFs were at
significantly higher intensities than environmentally accounted ones,
and still the effect induced by the MT EMFs was much stronger.
Therefore, we must also exclude field/radiation intensity. 4) The MT
EMFs were the most bioactive despite the shortest exposure duration,
therefore we must also exclude exposure duration.

What else was different in the MT EMFs than in the other four
EMFs? Obviously the answer is the variability of the exposure. The
parameters of the (real) MT fields (and especially intensity and wave-
form) change tremendously and unpredictably each moment during the
exposure (even though average intensity values over a few min or more
may not change very much), while the parameters of the MFs and the
PEF are invariable (apart from the constant alternation or the constant
pulsing of the carrier wave which are absolutely predictable).

Now is time to go back to the previous studies in which they also
compared the action of GSM and 50 Hz alternating MF exposures. In the
Belyaev et al study [8] the effects induced by the two EMFs were of
similar degrees. The intensities of both types of EMFs were smaller in
that study than in our studies. More specifically, the intensity (SAR) of
the GSM EMF was ∼10 times smaller, and the intensity of the MF 140
times (21/0.15) smaller than the strongest one in our studies. That
means the balance between the two EMFs in our studies favored the
(strongest) MF by ∼14 times than in [8], and in addition the exposure
to the MF was much longer (120 h) in our studies than the exposure to
the GSM EMFs (36 min), while in [8] the exposures were of equal
durations. And still, in our studies the effect of the GSM EMF was much
stronger than the corresponding effect of the 50 Hz MF. What was
different? Obviously, the difference was that we employed real-life
highly variable GSM EMFs emitted by commercially available mobile
phones [15,16], while Belyaev et al [8] employed simulated GSM EMFs
with invariable parameters emitted by “test” mobile phones.

Similarly, in the Duan et al study [122] the effects induced by the
50 Hz MF (30 G) and by the simulated GSM EMF (4 W/kg) were of si-
milar degrees. Their intensities in both fields were stronger than in our
studies [15,16]. More specifically, the intensity (SAR) of the GSM EMF
was ∼4.5 times bigger (4/0.89), and the intensity of the MF 1.43 times
bigger (30/21) than the strongest one in our studies. That means the
balance between the two EMFs in their study favoured the GSM EMF by
∼3 times than in our studies, and in addition their exposures were of
equal durations, while in our studies the exposure to the GSM EMFs was
much shorter than the exposure to the MF. And still, in their study the
effect of the GSM field was much smaller than in our studies (of similar
degree with that of the MF), since in our studies the effect of the GSM
EMF was much stronger than the corresponding effect of the 50 Hz MF.
Again, the crucial difference was obviously the real GSM exposure
employed in our studies [15,16] being much more bioactive than the
simulated invariable exposure by a generator employed in the Duan
et al study [122].

4.3. The inherent variability of the real MT EMFs and its role in bioactivity

All types of modern microwave telecommunication EMFs such as
MT, domestic cordless phones (DECT), wireless internet (Wi-Fi), com-
bine RF fields (with frequency on the order of ∼1 GHz) as the carrier
signals, with ELF fields (0–3000 Hz) to modulate the carrier and for
increasing the capacity of transmitted information by pulsing the signal.
GSM EMFs, emitted by mobile phones and base antennas, except for
their RF carrier signal, (900, 1800, 1900 MHz) include a pulse repeti-
tion frequency 217 Hz, plus other ELFs such as the multi-frame re-
petition frequency of 8.34 Hz. UMTS (3rd generation) mobile phones
and base station antennas emit an RF carrier signal at 1900–2100 MHz,
with two pulsing ELFs, at 100 Hz (“Time Division Duplex”), and
1500 Hz (“Adaptive Power Control”). During any conversation with
either GSM or UMTS mobile phones, there are constant unpredictable

changes related with the varying information transmitted each mo-
ment. Moreover there are continuous sudden unexpected changes in
intensity, due to changes in location, number of subscribers using the
network each moment, atmospheric conductivity changes, etc. which
may exceed 100% of average intensity. Finally, for energy saving rea-
sons, when GSM handsets operate in “listening” mode, the average
emitted power is much less (about one tenth) than when they operate in
“speaking” mode [32,41,100,142–145]. Thus, real digital microwave
telecommunication EMFs change constantly and unpredictably, being
impossible to simulate them by EMFs of fixed parameters.

Why exposure variability is so important for bioactivity? Living
organisms have been constantly exposed throughout biological evolu-
tion to terrestrial static electric and magnetic fields of average in-
tensities ∼130 V/m and ∼0.5 G respectively. While no adverse health
effects are connected with normal exposure to these natural ambient
fields, variations in their intensities on the order of ∼20% during
“magnetic storms” or “geomagnetic pulsations” due to changes in solar
activity with an average periodicity of about 11 years are connected
with increased rates of animal/human health incidents, including ner-
vous and psychic diseases, hypertensive crises, heart attacks, cerebral
accidents, and mortality [146,147].

Voltage-gated ion channels in all cell membranes switch between
open and close state whenever a change exceeding ∼30% in the
membrane voltage takes place [139,148], and all physiological cellular
effects are initiated by changes in ionic concentrations mediated by ion
channel gating [139]. It is known that ∼30 mV changes in the normal
∼100 mV transmembrane voltage is able to gate voltage-gated ion
channels in cell membranes [95–97,139,148].

Living organisms perceive EMFs as environmental stressors
[93,100,146]. It is reasonable to assume that cells/organisms adapt
more easily when EMFs are not significantly and unexpectedly varying,
in other words when their parameters are kept constant or vary only
slightly, or when the variation is predictable (as e.g. with the alter-
nating 50 Hz MFs, or the PEF in the present study, or the simulated MT
EMFs employed in many other studies). Since living organisms do not
have defense against variations on the order of ∼20% of natural EMFs
as reported, it is realistic to expect that they do not have defense against
EMFs, which vary unpredictably and at ∼100% or even more from
average intensity (and in addition are totally polarized, coherent,
pulsed, modulated, including simultaneously several different fre-
quencies, etc. as are the microwave EMFs employed in all modern tel-
ecommunications). Similarly, since cells respond to changes on the
order of ∼30% of the physiological membrane fields, it is realistic to
expect that they will - irregularly - respond to changes in externally
applied polarized EMFs of adequate intensity.

What is the difference between the natural EMFs in the terrestrial
environment, the physiological EMFs of cell membranes, and the man-
made EMFs employed in the studies? Terrestrial and cell membrane
fields are static and significantly (almost totally) polarized. They nor-
mally do not vary considerably in their intensities, but variations on the
order of 20–30% induce cellular/health effects. Man-made EMFs used
in the studies are totally polarized, and at the same time (especially the
microwave telecommunication EMFs) highly variable (alternating,
pulsed) with unexpected changes exceeding 100% of their normal
average intensities.

4.4. Conclusions

It comes that variability in the EMF exposure is an extremely im-
portant factor in order for the specific type of polarized EMF to be able
to induce biological/health effects.

It seems that the bioactive parameters of EMFs are: 1) Polarization
(combined with coherence), 2) ELFs, 3) Intensity, 4) Variability (un-
expected changes exceeding 20–30 % of average/normal intensity).
Once the EMF is polarized, includes ELFs, and has adequate intensity,
the parameter that makes the difference is variability.

D.J. Panagopoulos Mutation Research-Reviews in Mutation Research 781 (2019) 53–62

59

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight



The extreme and unpredictable variability of the real-life MT signals
that apparently seems to be the reason for the corresponding intense
bioactivity, does not concern only the 2nd generation (GSM) MT signals
tested in our experiments and in the present review, but all existing
types of digital MT signals (2nd, 3rd, 4th generation), and all types of
modern digital microwave telecommunication signals/EMFs (DECT
phones, Wi-Fi routers, etc.), since they all operate under the same
principles combining RF carrier signals with ELF pulsing and modula-
tion of similar frequency bands, emitting variable information each
moment which in turn makes the emission variable in intensity, fre-
quency, waveform etc. In fact, with every new generation of tele-
communication devices (e.g. 3rd, 4th, 5th generation mobile phones or
base antennas) the amount of information transmitted each moment
(speech, text, images, video, internet, etc.) is increased, resulting in
higher variability and complexity of the signals with the living cells/
organisms even more unable to adapt. The result of the recent study
that found a real 3rd generation (UMTS) MT EMF to be more bioactive
than real 2nd generation (GSM) MT EMF emitted by the same device
[36] is in line with this fact.

Thus, the present study makes the point that once a specific EMF is
polarized (and coherent), includes ELFs, and has adequate intensity,
then variability in its parameters (especially in its intensity) is of de-
cisive importance in terms of its bioactivity. In the present study this
was shown, a) by the direct comparison between six different EMFs in
terms of their ability to induce DNA fragmentation in my studies, b) by
indirect comparison between the effects of real MT EMFs in my studies
and simulated MT EMFs in other studies, both directly compared with
corresponding effects of a 50 Hz alternating MF, and c) by the large
difference in bioactivity between simulated MT signals with invariable
parameters and real MT (highly variable) ones from a great number of
reviewed studies. This important point in terms of biological activity
and public health protection should be further confirmed experimen-
tally by direct comparison of effects between simulated and real MT
EMFs of the same average parameters.

The importance of exposure variability shown in the present study
implies the need to define EMF-exposures not only by frequency com-
ponents and average intensity values, but by reporting maximum and
minimum intensity as well, frequency variations, pulsing or continuous
wave, modulation, and - of course - polarization. Moreover, in pub-
lished reviews of experimental studies employing MT and other types of
microwave telecommunication EMFs such as DECT phones, Wi-Fi etc, it
must be explicitly reported whether the exposures were real from
commercially available devices or simulated from generators, test
phones, etc.

The present study further confirms my previous results and con-
clusions that experiments should employ real-life and not simulated
EMFs, and human/animal exposure to microwave telecommunication
EMFs should be drastically reduced by prudent use, and establishment
of much stringer exposure limits by the responsible health authorities.
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Appendix 1 List of frequently used Abbreviations in the text

CW: continuous wave
ELF: extremely low frequency (0–3000 Hz)
EMF: electromagnetic field
FC: follicle cell
G: Gauss (magnetic field unit)
g: germarium
GSM: Global System for Mobile telecommunications
MF: magnetic field
MT: mobile telephony
NC: nurse cell

OC: oocyte
PEF: pulsed electric field
RF: radio frequency
S: stages of oogenesis
SAR: Specific Absorption Rate
SD: Standard Deviation
TUNEL: Terminal deoxynucleotide transferase dUTP Nick End

Labeling
UMTS: Universal Mobile Telecommunication System
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